Search results for "vector [form factor]"

showing 10 items of 770 documents

Quantitative ergodicity for some switched dynamical systems

2012

International audience; We provide quantitative bounds for the long time behavior of a class of Piecewise Deterministic Markov Processes with state space Rd × E where E is a finite set. The continuous component evolves according to a smooth vector field that switches at the jump times of the discrete coordinate. The jump rates may depend on the whole position of the process. Under regularity assumptions on the jump rates and stability conditions for the vector fields we provide explicit exponential upper bounds for the convergence to equilibrium in terms of Wasserstein distances. As an example, we obtain convergence results for a stochastic version of the Morris-Lecar model of neurobiology.

Statistics and ProbabilitySwitched dynamical systemsDynamical systems theoryMarkov process01 natural sciences34D2393E15010104 statistics & probabilitysymbols.namesakeCouplingPiecewise Deterministic Markov ProcessPosition (vector)60J25FOS: MathematicsState spaceApplied mathematicsWasserstein distance0101 mathematicsMathematicsProbability (math.PR)010102 general mathematicsErgodicityErgodicity[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Linear Differential EquationsPiecewisesymbolsJumpAMS-MSC. 60J75; 60J25; 93E15; 34D23Vector fieldStatistics Probability and Uncertainty60J75[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - Probability
researchProduct

Adaptive sparse representation of continuous input for tsetlin machines based on stochastic searching on the line

2021

This paper introduces a novel approach to representing continuous inputs in Tsetlin Machines (TMs). Instead of using one Tsetlin Automaton (TA) for every unique threshold found when Booleanizing continuous input, we employ two Stochastic Searching on the Line (SSL) automata to learn discriminative lower and upper bounds. The two resulting Boolean features are adapted to the rest of the clause by equipping each clause with its own team of SSLs, which update the bounds during the learning process. Two standard TAs finally decide whether to include the resulting features as part of the clause. In this way, only four automata altogether represent one continuous feature (instead of potentially h…

Stochastic Searching on the Line automatonBoosting (machine learning)decision support systemTK7800-8360Computer Networks and CommunicationsComputer scienceDiscriminative modelFeature (machine learning)Electrical and Electronic EngineeringArtificial neural networkrule-based learninginterpretable machine learninginterpretable AISparse approximationAutomatonRandom forestSupport vector machineVDP::Teknologi: 500Tsetlin MachineXAIHardware and ArchitectureControl and Systems EngineeringSignal ProcessingElectronicsTsetlin automataAlgorithm
researchProduct

The impact of economic and policy uncertainty shocks in Spain

2020

The purpose of this research is to quantify the impact of economic uncertainty shocks in Spain by using a structural vector autoregression (SVAR) approach with data from the first quarter of 2001 u...

Structural vector autoregressionEconomic uncertainty0502 economics and business05 social sciences050602 political science & public administrationEconometricsEconomics050207 economicsBusiness and International ManagementQuarter (United States coin)General Economics Econometrics and Finance0506 political scienceJournal of Economic Policy Reform
researchProduct

Semi-supervised Hyperspectral Image Classification with Graphs

2006

This paper presents a semi-supervised graph-based method for the classification of hyperspectral images. The method is designed to exploit the spatial/contextual information in the im- ages through composite kernels. The proposed method produces smoother classifications with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. Good accuracy in high dimensional spaces and low number of labeled samples (ill-posed situations) are produced as compared to standard inductive support vector machines.

Structured support vector machineContextual image classificationbusiness.industryHyperspectral imagingPattern recognitionGraphRelevance vector machineSupport vector machineComputingMethodologies_PATTERNRECOGNITIONKernel (image processing)Artificial intelligencebusinessCluster analysisMathematics2006 IEEE International Symposium on Geoscience and Remote Sensing
researchProduct

Including invariances in SVM remote sensing image classification

2012

This paper introduces a simple method to include invariances in support vector machine (SVM) for remote sensing image classification. We rely on the concept of virtual support vectors, by which the SVM is trained with both the selected support vectors and synthetic examples encoding the invariance of interest. The algorithm is very simple and effective, as demonstrated in two particularly interesting examples: invariance to the presence of shadows and to rotations in patchbased image segmentation. The improved accuracy (around +6% both in OA and Cohen's κ statistic), along with the simplicity of the approach encourage its use and extension to encode other invariances and other remote sensin…

Structured support vector machineContextual image classificationbusiness.industryPattern recognitionImage segmentationENCODESupport vector machineSimple (abstract algebra)Encoding (memory)Computer visionArtificial intelligencebusinessStatisticRemote sensingMathematics2012 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Highly sensitive superconducting circuits at ∼700 kHz with tunable quality factors for image-current detection of single trapped antiprotons

2016

We developed highly-sensitive image-current detection systems based on superconducting toroidal coils and ultra-low noise amplifiers for non-destructive measurements of the axial frequencies (550$\sim$800$\,$kHz) of single antiprotons stored in a cryogenic multi-Penning-trap system. The unloaded superconducting tuned circuits show quality factors of up to 500$\,$000, which corresponds to a factor of 10 improvement compared to our previously used solenoidal designs. Connected to ultra-low noise amplifiers and the trap system, signal-to-noise-ratios of 30$\,$dB at quality factors of > 20$\,$000 are achieved. In addition, we have developed a superconducting switch which allows continuous tu…

SuperconductivityPhysicsSpeichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsSolenoidal vector fieldbusiness.industryAmplifierDetectorFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesNoise (electronics)010305 fluids & plasmasQuality (physics)Antiproton0103 physical sciencesOptoelectronicsDetectors and Experimental Techniques010306 general physicsbusinessphysics.ins-detInstrumentationElectronic circuit
researchProduct

Classification and Automated Interpretation of Spinal Posture Data Using a Pathology-Independent Classifier and Explainable Artificial Intelligence (…

2021

Clinical classification models are mostly pathology-dependent and, thus, are only able to detect pathologies they have been trained for. Research is needed regarding pathology-independent classifiers and their interpretation. Hence, our aim is to develop a pathology-independent classifier that provides prediction probabilities and explanations of the classification decisions. Spinal posture data of healthy subjects and various pathologies (back pain, spinal fusion, osteoarthritis), as well as synthetic data, were used for modeling. A one-class support vector machine was used as a pathology-independent classifier. The outputs were transformed into a probability distribution according to Plat…

Support Vector MachineComputer sciencePostureback painTP1-1185BiochemistryspineSynthetic dataArticlebiomechanicsAnalytical ChemistryMachine LearningClassifier (linguistics)Back painmedicineHumansElectrical and Electronic Engineeringddc:796InstrumentationInterpretation (logic)explainable artificial intelligenceOrientation (computer vision)business.industryChemical technologydata miningartificial intelligenceAtomic and Molecular Physics and OpticsSupport vector machineosteoarthritismachine learningBinary classificationspinal fusionProbability distributionArtificial intelligencemedicine.symptombusinessSensors (Basel, Switzerland)
researchProduct

An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals

2022

Emotion charting using multimodal signals has gained great demand for stroke-affected patients, for psychiatrists while examining patients, and for neuromarketing applications. Multimodal signals for emotion charting include electrocardiogram (ECG) signals, electroencephalogram (EEG) signals, and galvanic skin response (GSR) signals. EEG, ECG, and GSR are also known as physiological signals, which can be used for identification of human emotions. Due to the unbiased nature of physiological signals, this field has become a great motivation in recent research as physiological signals are generated autonomously from human central nervous system. Researchers have developed multiple methods for …

Support Vector MachineEmotionsWavelet AnalysisHumansElectroencephalographyElectrical and Electronic EngineeringArousalemotion charting; EEG signals; physiological signals; ECG signals; ICA; stacked autoencoder; ensemble classifierVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550BiochemistryInstrumentationAtomic and Molecular Physics and OpticsAnalytical ChemistrySensors
researchProduct

Internet of Things with Deep Learning-Based Face Recognition Approach for Authentication in Control Medical Systems

2022

Internet of Things (IoT) with deep learning (DL) is drastically growing and plays a significant role in many applications, including medical and healthcare systems. It can help users in this field get an advantage in terms of enhanced touchless authentication, especially in spreading infectious diseases like coronavirus disease 2019 (COVID-19). Even though there is a number of available security systems, they suffer from one or more of issues, such as identity fraud, loss of keys and passwords, or spreading diseases through touch authentication tools. To overcome these issues, IoT-based intelligent control medical authentication systems using DL models are proposed to enhance the security f…

Support Vector MachineGeneral Immunology and MicrobiologyArticle SubjectDatabases FactualSARS-CoV-2Applied MathematicsAutomated Facial RecognitionInternet of ThingsCOVID-19General MedicineEquipment DesignVDP::Teknologi: 500::Industri- og produktdesign: 640General Biochemistry Genetics and Molecular BiologyPattern Recognition AutomatedDeep LearningVDP::Teknologi: 500::Bioteknologi: 590VDP::Teknologi: 500::Medisinsk teknologi: 620Modeling and SimulationHumansComputer SimulationAlgorithmsComputer Security
researchProduct

Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers

2022

Coronary heart disease is one of the major causes of deaths around the globe. Predicating a heart disease is one of the most challenging tasks in the field of clinical data analysis. Machine learning (ML) is useful in diagnostic assistance in terms of decision making and prediction on the basis of the data produced by healthcare sector globally. We have also perceived ML techniques employed in the medical field of disease prediction. In this regard, numerous research studies have been shown on heart disease prediction using an ML classifier. In this paper, we used eleven ML classifiers to identify key features, which improved the predictability of heart disease. To introduce the prediction …

Support Vector MachineHeart DiseasesCoronary DiseaseBiochemistryAtomic and Molecular Physics and OpticsAnalytical ChemistryMachine LearningVDP::Teknologi: 500heart disease dataset; disease prediction; supervised learning; machine learningHumansVDP::Medisinske Fag: 700Neural Networks ComputerElectrical and Electronic EngineeringInstrumentationAlgorithmsSensors; Volume 22; Issue 19; Pages: 7227
researchProduct